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Abstract 
 
     Virtual battlefields devoid of vegetation 
deprive soldiers of valuable training in the 
critical aspects of terrain tactics and 
terrain-based situational awareness. Barren 
landscapes fail to provide trainees with 
necessary visual cues required to grasp the 
scale of their surroundings. Without the 
cover of vegetation, targets are easily visible 
from the air. Line of sight calculations 
become simply a matter of sorting 
elevations. There is a need to (re)introduce 
vegetation into the virtual battlefield to 
improve training effectiveness while 
minimizing the expenses typically incurred 
building such terrains.   
     This paper discusses the current state of 
the open source project GENETICS and 
how simulationists can use GENETICS to 
quickly and cheaply build large-scale 
natural environments to improve training 
effectiveness. It will also briefly touch upon 
level-of-detail techniques and ecotype 
modeling and how GENETICS is used to 
generate land cover data where none exists. 
 
 

Introduction 
 
     Most large-scale terrains built for 
simulator-based military training are bleak, 
desolate places that share a strong measure 
of commonality with desert environments. 
One of the ongoing problems with relatively 
featureless environments is one's inability 
to grasp the scale of your surroundings. It 
is nearly impossible to determine distances 
or speed in a world devoid of a single bush,  
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tree, or surface detail necessary to establish 
depth cues (Darken, 2003; Pietso, 2002; 
Wright, 2000). With terrains of large 
polygonal meshes draped with blurry 
satellite imagery (see Fig. 1), such visual 
cues are almost entirely absent for the 
infantry soldier on the ground or the low 
flying helicopter or aircraft pilot. This 
situation must change to improve training 
effectiveness.  
 

 
 

Fig. 1  Flight sim without vegetation 
 
     Within today's cockpit simulators, it is 
too easy for a pilot to quickly locate, identify 
and destroy targets on the virtual 
battlefield. When the only object protruding 
from the terrain surface is an enemy tank 
with no cover to hide behind, the task of 
acquiring and destroying your enemy is 
greatly simplified to the point of providing 
negative training. Adding vegetation to the 
synthetic environment makes training 
vastly more realistic and thus much harder. 
     Such terrain characteristics are highly 
desirable and thus for detailed simulated 
environments, like those found in the 
America's Army game (Davis, 2003; Zyda, 
2003), a team of artists is normally hired to 
handcraft a custom terrain database. These 



databases are not only simulation system 
specific, limiting their reusability or 
interoperability with other simulations, but 
also take a great deal of time to create. 
Additionally, such databases are typically 
focused around a player's expected actions 
and viewpoints. If players deviate from the 
developer's expectations, they quickly 
discover places within the world that simply 
do not “exist”. These limitations prevent 
simulation scalability throughout the full 
spectrum of military operations.  
     Terrain visualization techniques often 
focus on optimizing the geometric mesh of 
the terrain's surface. Level-of-detail (LOD) 
techniques can render realistic-looking 
vegetation objects within desired 
performance constraints (Mantler, 2003). 
We can combine these methods with basic 
imagery and topographic analysis to 
automatically construct vegetation-laden 
terrain based on readily-available source 
data (elevation, imagery, and land cover 
classification), adding plausible terrain 
details as needed. Place these landscape 
construction and visualization procedures 
within a networked combat simulator and 
you have dramatically increased the 
difficulty of training exercises and improved 
our soldiers' chances in the field. 
 
 

GENETICS 
 
     The aim of our research is to replace the 
barren landscapes found within most 3D 
combat simulations with detailed terrain 
and natural surroundings that dramatically 
increase both the believability and difficulty 
of the training environment - matching the 
synthetic perceptual stimuli to the actual 
perceptual stimuli needed to execute 
specific training tasks. We posit that there 
are many unmet visual cue requirements 
(e.g. vegetation) within existing simulators 
that are vital to the effectiveness of 
simulator-based training. Our approach 
enhances the apparent quality of the given 
set of terrain elevation data and surface 
imagery, adds vegetation objects that are 
placed similarly to the arrangement within 
the actual environment, and generates a 
plausible synthetic terrain environment 
where data is missing or incomplete.  
     Our algorithm uses on-demand, runtime 
processing of elevation data points to create 
1 degree by 1 degree skirted height field 
meshes of the terrain. Height field data is 

imported directly from an elevation data 
repository (e.g. DTED® – Digital Terrain 
Elevation Data from the National 
Geospatial-Intelligence Agency). Ground 
surface details between the known elevation 
postings are added by subdividing the base 
mesh and increasing or decreasing the 
values of the linearly interpolated midpoint 
heights with Perlin noise (Perlin, 1985).  
Filtering the amplitude of the noise based 
on elevation values (e.g. larger elevation 
changes possible in mountainous settings 
versus plains) helps to overcome the 
appearance of randomness between 
postings.  Using the SOARX continuous 
level-of-detail (CLOD) algorithm (Balogh, 
2003), we take our enhanced height field 
data and construct a dynamically optimized 
mesh grid based on the user's view 
frustum. As the user nears the edge of the 
terrain, we determine the next geocell’s 
coordinates, load up the corresponding 
source data from our repository, and 
process the next 1 degree by 1 degree 
geocell in the same manner. Generating a 
geocell’s height field takes only a matter of 
seconds. These techniques allow us to offer 
the user a nearly endless supply of 
optimized elevation meshes derived from 
raw source data with increased resolution 
over the given source data.   
     Over our elevation mesh, we drape 
satellite imagery shaded at run-time with 
normal maps (i.e. one for the base gradient 
and one for the detail gradient) to add 
terrain shading and surface details 
corresponding to the noise-generated 
additions to the elevation data. A geocell’s 
height field data, noise data and associated 
textures are cached for improved load times 
or can be regenerated afresh if desired.  The 
ability to consistently recreate the same 
mesh every time is controlled by the 
selection of a random number seed.   
    At this point, we have created a terrain 
visualization environment (i.e. imagery over 
a mesh) that could easily be used for many 
flight simulation applications.  However, in 
order to bring in participation from ground-
based and low-level aerial platforms, we 
need to look at adding more details to our 
landscape.  Thus, from the geocell’s height 
field data, we create height maps, slope 
maps (with aspect angles), and relative 
elevation maps.  These images are needed 
in the GENETICS vegetation placement 
process. 
 



 
 

 
 

Fig. 2  NLCD map of Monterey, CA 
 

     For vegetation placement, we process 
land cover classification (LCC) GeoTIFF 
images (see Fig. 2) of the region of interest.  
The USGS’s Seamless Data Distribution 
System offers users the ability to freely 
download National Land Cover Data (NLCD) 
as orthorectified GeoTIFF images from the 
Internet, but any LCC scheme using 
GeoTIFF images can be used (including 
manually created images).  NLCD images 
use a palette of 21 colors to represent 
different LCC types (see Fig. 3). 
 

 
 

Fig. 3  NLCD legend 
 
     A user of GENETICS notes the red, blue 
and green values assigned to each LCC type 

along with its description in an XML file 
that is parsed at run-time.  Also included in 
this file are the topographical regimes for 
each LCC type and the various geometric 
object models that will be placed in the 
scene corresponding to each LCC type.  
Note that multiple object models can be 
assigned to a single LCC type (e.g. young, 
medium, and old versions of a vegetation 
object).    
     After the LCC configuration file is parsed 
and the LCC source image loaded into the 
system, we create an image for each desired 
LCC type showing “picked points” (i.e. a 
black pixel is given for each corresponding 
pixel in the LCC image that matches or 
“hits” the color values of the LCC type; a 
white pixel represents a “miss”).  A union of 
all the LCC “picked points” colored with 
their respective LCC color values would 
recreate the original source image.  This 
demonstrates the “all or nothing” approach 
of using an LCC image.  Each pixel (and 
thus its corresponding ground location) is 
designated a single LCC type with no 
overlap possible.  Since this situation rarely 
occurs in nature (particularly in transition 
zones), we need to “smooth” this data from 
black or white (i.e. on or off) to various 
shades of gray (probabilities of occurrence). 
     We create a smoothed image for each 
LCC type using a “third nearest neighbor” 
weighting scheme. If our current pixel is a 
“picked point” (i.e. a “hit”) for that LCC type 
it earns a score of 50.  A “miss” earns no 
score.  We then look to the north, south, 
east, and west of our current pixel.  A hit 
from any of these four pixels earns our 
current pixel another 6.82 points each.  
From our next nearest neighbor, the four 
diagonals (i.e. northeast, southeast, 
southwest, and northwest of our current 
pixel), a hit earns our current pixel another 
3.41 points each.  Finally, for our third 
nearest neighbor, the pixel beyond each of 
our nearest neighbors in the four cardinal 
directions, we earn a 2.27 for each hit.  
With this smoothing function, a “hit” pixel 
located in a dense patch of other “hit” pixels 
will trend towards a score of 100 while an 
isolated “hit” pixel will trend towards 50.  
Likewise, a “miss” pixel that is completely 
surrounded by “hit” pixels will trend 
towards 50 while a “miss” pixel far removed 
from any “hit” pixels will trend towards 0.  
Using such a filtering scheme, we have 
created an initial probability map for each 
LCC type by relating a pixel’s composite 



score to the blackness or whiteness of each 
pixel.  However, we need to manipulate this 
map further to account for topological 
influences that we derived previously. 
     The idea of using elevation, slope, aspect 
angle, and relative elevation to affect 
vegetation placement was inspired by 
Johan Hammes' paper, “Modeling of 
ecosystems as a data source for real-time 
terrain rendering” (Hammes, 2001).  The 
value of each pixel (i.e. the probability of 
vegetation placement) from our “smoothed” 
image is increased or decreased based upon 
the preferred regimes of that particular LCC 
type.  For example, an evergreen may have 
an elevation regime of 0 to 3000 meters, 
which means that the closer one gets to 
either of those extremes, the more unlikely 
an evergreen object is likely to be placed 
there.  This allows us to create (or enforce) 
timberlines and prevent trees from growing 
in the ocean.  Similarly, evergreens are 
unlikely to grow on a very steep slope.  Our 
LCC configuration file should reflect a 
maximum slope angle and probabilities 
adjusted negatively as we approach that 
angle.  A slope’s aspect angle will affect the 
density and growth of some LCC objects.  
For example, in the North Hemisphere, 
trees typically grow better on slopes that 
face south or west (Hilts, 1999), resulting in 
denser, older growth.  Relative elevation (i.e. 
comparing the difference between a 
particular point’s elevation and the average 
elevation of its surrounding neighbors) is 
an effort to recognize that dips and valleys 
in the terrain will likely receive more water 
and be more sheltered from the weather 
than rises and ridgelines.  Thus, we may 
wish to bias our probability to promote 
placement in valleys (i.e. negative relative 
elevation) and reduce the probability of 
placement along ridgelines (positive relative 
elevation).   
     Each of the above factors contributes to 
the final score of each pixel for each LCC 
type.  Collectively, these pixels form a 
probability map reflecting the likelihood 
that a particular LCC type exists within the 
pixel's corresponding area on the terrain 
surface (see Fig. 4). Random draws against 
these probability maps determine the type, 
location, density, and appearance of the 
vegetation objects found within the 
synthetic natural environment. Randomized 
orientation and scaling of the objects give 
the appearance of a greater variety of 
models.   

 

 
 

Fig. 4  Evergreen probability map 
 
     The resulting procedurally created 
geotypical distribution looks plausible (see 
Figs. 5-A and B) with overlapping vegetation 
types occurring naturally within transition 
zones.  This simple algorithm can also be 
extended to incorporate soil moisture or 
other factors (e.g. prevailing winds, 
proximity to water) or to generate geotypical 
distributions of man-made landscape 
features (as seen in Figs. 6 and 7).   
 

 
 
Fig. 5-A  Geotypical vegetation distribution 

 

 
 
Fig. 5-B  Geotypical vegetation distribution 



 
 

 
 

Fig. 6  Rural distribution 
 
 

 
 

Fig. 7  Urban distribution 
 
 
     A masking image adds the capability to 
prevent a specific LCC type or multiple 
types from occurring in a particular region.  
This allows for easy removal of vegetation 
objects from lakes or recent alterations to 
the terrain (e.g. defoliation, clear-cutting, 
wildfires), but can also be used to designate 
an area on the map where a geospecific 
urban environment needs to be placed. 
     Once the location, orientation, and scale 
of a particular object model has been 
established, it must be added to the scene 
using an efficient spatial data structure 
such as a quadtree.  As the bounding 
volume of a branch of the quadtree 
intersects or falls within the view frustum, 
that branch is considered active and 
potentially viewable.  Non-active branches 
are culled away from the rendering of the 
current frame.  Small pixel culling prevents 
rendering objects that do not meet a 
minimum screen size threshold.  Finally, 
the object model itself can make use of 
switch nodes within its geometry to 

determine the appropriate LOD required by 
the scene (typically as a function of 
distance from the view).  Thus, distant 
objects can be drawn as billboards, medium 
range objects can be represented as 
intersecting planes, and close objects can 
be depicted as complex geometric objects.  
Some commercial packages will create LOD 
object models automatically, and we have 
chosen such a package for our own work. 
Our assumption is that most simulation 
centers are likely to have a custom-built 
library of such objects at their disposal or 
have the means to quickly generate such 
objects as needed.  We believe the creation 
of such objects is not the problem, but that 
the realistic placement of millions of them 
within a scene is the larger challenge. 
 
 

Automatic Generation of LCC Data 
 
     A logical alternative to creating terrain 
probability distributions by hand is to use 
machine learning technologies to construct 
them automatically.  We are investigating 
the use of machine learning techniques for 
automatically estimating the LCC 
distribution in such forms as k-nearest 
neighbor estimators, simple Bayesian belief 
networks, and neural networks. The 
attraction of these techniques is twofold. 
Firstly, they typically result in a formally-
specified probability distribution whose 
assumptions and biases may be rigorously 
characterized. Secondly, these techniques 
can be partially or fully automated, 
reducing the workload on a human 
modeler. A liability of these techniques is 
that they require "training data" in order to 
function, e.g. a region in which the LCC 
values are known and provided to the 
system. The tacit assumption here is that 
the provided training data is correct and 
has a similar distribution to the target 
locale to which the technique is being 
applied. 
     The basis for all machine learning 
approaches to constructing a probability 
density is a set of training data. The 
training data consists of a set of exemplars 
each of which corresponds to a single pixel 
for which the correct LCC type is known.  
Each exemplar is an ordered pair consisting 
of domain and range values.  The range 
value is the LCC type.  The domain values 
can be any available quantities relevant to 
predicting the LCC type.  At a minimum, we 



include the elevation, slope, aspect angle, 
and relative elevation for the pixel in 
question.  Each of these values is 
represented as in integer between 0 and 
255 inclusive. 
 

 
Fig. 8  The rectangle in the upper left is the 
training region (i.e. known LCC data).  The 
rest are false color elevation data. 
 
     The simplest and most successful 
approach we have tried so far is to estimate 
the LCC type using a k-nearest neighbors 
density estimator (Duda, Hart, and Stork 
2000).  At each pixel where the LCC type is 
unknown (the query point), the domain 
values described above are gathered.  Let 
us take xi to be the vector of domain values 
for the i’th member of the training set and 
yi to be the corresponding (known) value of 
the LCC type. Let x to be the corresponding 
vector of values at the query point. For each 
query point we find the k exemplars with 
range values (xi’s) closest (in terms of 
ordinary Euclidean distance) to the query 
point. The search for the nearest exemplars 
can be performed in log time by using data 
structures and search algorithms designed 
to make spatial range queries efficient, 
such as the k-d tree (Preparata and 
Shamos 1985). The probability of each LCC 
type at the query point is then taken to be 
the fraction of the k exemplars having that 
LCC type.  Figs. 8 and 9 display the region 
with known LCC values and the maximally-
likely value of the LCC type over the entire 
region, including on the training set. Note 
that the predictions for the training region 
would not be used and are presented only 

for purposes of comparison to the ground 
truth. While highly imperfect (some features 
such as urban regions are not predicted at 
all), it may be usable for some purposes. 
 
 

 
Fig. 9  The maximum likelihood estimate of 
the LCC type with the k-nearest neighbors 
estimator.   
 
     One weakness of this model as 
compared to the by-hand approach outlined 
above is that it does not take into account 
the LCC type assigned to nearby pixels.  
There is a chicken-and-egg problem implicit 
here, as if the LCC type of a given pixel is 
unknown, the types of neighboring pixels 
may be unknown as well.  This difficulty 
may be overcome by constructing the LCC 
type estimates iteratively.  That is, given an 
initial, possibly random, guess of all 
unknown LCC types, the LCC type at each 
pixel is estimated to be consistent with the 
guess.  This estimation process is then 
repeated until convergence.  This is a fairly 
established idea that began with (Geman 
and Geman 1984) and has spawned a 
whole field of research (Winkler 2003).  We 
have used both simple (also called “naïve”) 
Bayesian networks and single artificial 
neurons (equivalent to logistic regression) 
as the model in applying this approach 
(Russell and Norvig 2002), but a 
satisfactory result has yet to be achieved.  A 
more sophisticated coding of the inputs to 
the artificial neuron (i.e. “coarse coding” 
versus direct input of the rescaled 
elevation, etc.) may yield better 
performance. 



 
 

Implementation Details and Performance 
 
     GENETICS resides in the SOARXTerrain 
component of the military’s open source 
game/simulation engine, Delta3D.  Delta3D 
is a high-level API that sits on top of 
numerous other open source libraries such 
as Open Scene Graph (Burns, 2003), Open 
Dynamics Engine, OpenAL, Character 
Animation Library, and others.  Within 
GENETICS, extensive use is made of the 
Geospatial Data Abstraction Layer (GDAL).  
GDAL is an open source translator library 
for raster geospatial data formats.  GDAL 
allows GENETICS integrate diverse datasets 
(NGA DTED®, USGS NLCD, NASA 
LandSat7, and US Census Bureau TIGER) 
without the need for expensive proprietary 
tools.   
     As noted earlier, GENETICS works in 
tandem with our CLOD implementation 
SOARXTerrain, but SOARXTerrain is not 
dependent on GENETICS.  Thus, we can 
run a Delta3D application that uses only 
SOARXTerrain, but not GENETICS.  We 
could also replace the terrain surface CLOD 
algorithm (e.g. with another CLOD 
implementation or a static mesh) without 
impacting GENETICS. 
 

 
 

Fig. 10  GENETICS “black box” diagram 
 
     In Fig. 10, we show the flow of data 
through the system.  Raw source data is 
input from the left.  User-manipulated XML 
configuration files and visual models are 
input from the top.  SOARXTerrain 
generates a terrain mesh, base texture, and 

detail textures that are cached for 
subsequent runs as desired.  The elevation 
data is also used by GENETICS to create its 
topographic textures.  The LCC image is 
used to generate the picked points and 
smoothed points textures.  Finally, a 
probability map is created for each LCC 
type.  All of these images are cached for 
subsequent runs of the same terrain. 
     Our GENETICS test system (Athlon XP 
3000, 1Gb RAM, NVIDIA 6800GT 256Mb) 
currently runs at 15 frames per second 
(1600x1200) with 1.6 million objects from 
five LCC types represented in the scene.  
From the start of execution with an empty 
cache to the first rendered frame takes 
approximately two minutes.  Using cached 
data cuts this time in half. 
     Geometric object instancing (Carucci, 
2005), still a graphics card driver 
dependent feature, holds the promise of 
dramatically increasing this frame rate by 
storing an object’s vertex and texture 
information on the card, thus requiring 
only the passing of position attitude 
transform information to the shader 
program.  Additionally, great pain has been 
taken to maximize the use of textures as a 
storage medium to facilitate the expanded 
use of shader programming to improve the 
performance of GENETICS.   
      
 

Conclusions 
 
     We have seen that separate efforts in 
improving one particular aspect of terrain 
fidelity are not enough to give players the 
realism that tactical military training 
requires. Thus, we have taken an integrated 
approach to incorporate "best of breed" 
techniques within a single architecture. 
While previously it has taken teams of 
artists to create static, small scale, custom-
tailored landscapes, our approach 
automatically generates vast realistic 
terrains at runtime for any place on Earth. 
With a minimum amount of shared source 
data and parameters, terrains can be 
synchronized easily between clients; 
guaranteeing the same terrain environment 
is created by all hosts within a 
heterogeneous networked simulation 
system. Our terrains can be reused or 
regenerated afresh with new parameters in 
response to the needs of the training 
audience. With the simple change of a 
random number seed, a new terrain 
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database can be generated without the 
need to manipulate a database. This feature 
allows trainers the flexibility to use the 
same terrain repeatedly or create a new one 
each time; forcing trainees to not depend 
upon the static nature of most simulation 
databases.  
     The immediate and practical benefit of 
this work is that tactical training improves 
by giving players a more realistic 
environment in which to operate. It is 
possible to have simulators and simulated 
forces engage in a multi-spectrum tactical 
conflict where the natural environment 
takes on an active role in the experience 
and is no longer simply a backdrop. It is 
only at this point, when the ground cover 
looks real and foliage hides your view of the 
enemy that terrain can truly work towards 
becoming a full-fledged entity within the 
distributed virtual environment.  
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