
GENERATING ENHANCED NATURAL ENVIRONMENTS AND TERRAIN
FOR INTERACTIVE COMBAT SIMULATIONS (GENETICS)

Major William D. Wells, USAF
MOVES Ph.D. Candidate

&
Christian J. Darken, Ph.D.

Associate Professor
MOVES Institute, Naval Postgraduate School

Abstract

 Virtual battlefields devoid of vegetation
deprive soldiers of valuable training in the
critical aspects of terrain tactics and
terrain-based situational awareness. Barren
landscapes fail to provide trainees with
necessary visual cues required to grasp the
scale of their surroundings. Without the
cover of vegetation, targets are easily visible
from the air. Line of sight calculations
become simply a matter of sorting
elevations. There is a need to (re)introduce
vegetation into the virtual battlefield to
improve training effectiveness while
minimizing the expenses typically incurred
building such terrains.
 This paper discusses the current state of
the open source project GENETICS and
how simulationists can use GENETICS to
quickly and cheaply build large-scale
natural environments to improve training
effectiveness. It will also briefly touch upon
level-of-detail techniques and ecotype
modeling and how GENETICS is used to
generate land cover data where none exists.

Introduction

 Most large-scale terrains built for
simulator-based military training are bleak,
desolate places that share a strong measure
of commonality with desert environments.
One of the ongoing problems with relatively
featureless environments is one's inability
to grasp the scale of your surroundings. It
is nearly impossible to determine distances
or speed in a world devoid of a single bush,

Presented at the IMAGE 2005 Conference
Scottsdale, Arizona July 2005.

tree, or surface detail necessary to establish
depth cues (Darken, 2003; Pietso, 2002;
Wright, 2000). With terrains of large
polygonal meshes draped with blurry
satellite imagery (see Fig. 1), such visual
cues are almost entirely absent for the
infantry soldier on the ground or the low
flying helicopter or aircraft pilot. This
situation must change to improve training
effectiveness.

Fig. 1 Flight sim without vegetation

 Within today's cockpit simulators, it is
too easy for a pilot to quickly locate, identify
and destroy targets on the virtual
battlefield. When the only object protruding
from the terrain surface is an enemy tank
with no cover to hide behind, the task of
acquiring and destroying your enemy is
greatly simplified to the point of providing
negative training. Adding vegetation to the
synthetic environment makes training
vastly more realistic and thus much harder.
 Such terrain characteristics are highly
desirable and thus for detailed simulated
environments, like those found in the
America's Army game (Davis, 2003; Zyda,
2003), a team of artists is normally hired to
handcraft a custom terrain database. These

databases are not only simulation system
specific, limiting their reusability or
interoperability with other simulations, but
also take a great deal of time to create.
Additionally, such databases are typically
focused around a player's expected actions
and viewpoints. If players deviate from the
developer's expectations, they quickly
discover places within the world that simply
do not “exist”. These limitations prevent
simulation scalability throughout the full
spectrum of military operations.
 Terrain visualization techniques often
focus on optimizing the geometric mesh of
the terrain's surface. Level-of-detail (LOD)
techniques can render realistic-looking
vegetation objects within desired
performance constraints (Mantler, 2003).
We can combine these methods with basic
imagery and topographic analysis to
automatically construct vegetation-laden
terrain based on readily-available source
data (elevation, imagery, and land cover
classification), adding plausible terrain
details as needed. Place these landscape
construction and visualization procedures
within a networked combat simulator and
you have dramatically increased the
difficulty of training exercises and improved
our soldiers' chances in the field.

GENETICS

 The aim of our research is to replace the
barren landscapes found within most 3D
combat simulations with detailed terrain
and natural surroundings that dramatically
increase both the believability and difficulty
of the training environment - matching the
synthetic perceptual stimuli to the actual
perceptual stimuli needed to execute
specific training tasks. We posit that there
are many unmet visual cue requirements
(e.g. vegetation) within existing simulators
that are vital to the effectiveness of
simulator-based training. Our approach
enhances the apparent quality of the given
set of terrain elevation data and surface
imagery, adds vegetation objects that are
placed similarly to the arrangement within
the actual environment, and generates a
plausible synthetic terrain environment
where data is missing or incomplete.
 Our algorithm uses on-demand, runtime
processing of elevation data points to create
1 degree by 1 degree skirted height field
meshes of the terrain. Height field data is

imported directly from an elevation data
repository (e.g. DTED® – Digital Terrain
Elevation Data from the National
Geospatial-Intelligence Agency). Ground
surface details between the known elevation
postings are added by subdividing the base
mesh and increasing or decreasing the
values of the linearly interpolated midpoint
heights with Perlin noise (Perlin, 1985).
Filtering the amplitude of the noise based
on elevation values (e.g. larger elevation
changes possible in mountainous settings
versus plains) helps to overcome the
appearance of randomness between
postings. Using the SOARX continuous
level-of-detail (CLOD) algorithm (Balogh,
2003), we take our enhanced height field
data and construct a dynamically optimized
mesh grid based on the user's view
frustum. As the user nears the edge of the
terrain, we determine the next geocell’s
coordinates, load up the corresponding
source data from our repository, and
process the next 1 degree by 1 degree
geocell in the same manner. Generating a
geocell’s height field takes only a matter of
seconds. These techniques allow us to offer
the user a nearly endless supply of
optimized elevation meshes derived from
raw source data with increased resolution
over the given source data.
 Over our elevation mesh, we drape
satellite imagery shaded at run-time with
normal maps (i.e. one for the base gradient
and one for the detail gradient) to add
terrain shading and surface details
corresponding to the noise-generated
additions to the elevation data. A geocell’s
height field data, noise data and associated
textures are cached for improved load times
or can be regenerated afresh if desired. The
ability to consistently recreate the same
mesh every time is controlled by the
selection of a random number seed.
 At this point, we have created a terrain
visualization environment (i.e. imagery over
a mesh) that could easily be used for many
flight simulation applications. However, in
order to bring in participation from ground-
based and low-level aerial platforms, we
need to look at adding more details to our
landscape. Thus, from the geocell’s height
field data, we create height maps, slope
maps (with aspect angles), and relative
elevation maps. These images are needed
in the GENETICS vegetation placement
process.

Fig. 2 NLCD map of Monterey, CA

 For vegetation placement, we process
land cover classification (LCC) GeoTIFF
images (see Fig. 2) of the region of interest.
The USGS’s Seamless Data Distribution
System offers users the ability to freely
download National Land Cover Data (NLCD)
as orthorectified GeoTIFF images from the
Internet, but any LCC scheme using
GeoTIFF images can be used (including
manually created images). NLCD images
use a palette of 21 colors to represent
different LCC types (see Fig. 3).

Fig. 3 NLCD legend

 A user of GENETICS notes the red, blue
and green values assigned to each LCC type

along with its description in an XML file
that is parsed at run-time. Also included in
this file are the topographical regimes for
each LCC type and the various geometric
object models that will be placed in the
scene corresponding to each LCC type.
Note that multiple object models can be
assigned to a single LCC type (e.g. young,
medium, and old versions of a vegetation
object).
 After the LCC configuration file is parsed
and the LCC source image loaded into the
system, we create an image for each desired
LCC type showing “picked points” (i.e. a
black pixel is given for each corresponding
pixel in the LCC image that matches or
“hits” the color values of the LCC type; a
white pixel represents a “miss”). A union of
all the LCC “picked points” colored with
their respective LCC color values would
recreate the original source image. This
demonstrates the “all or nothing” approach
of using an LCC image. Each pixel (and
thus its corresponding ground location) is
designated a single LCC type with no
overlap possible. Since this situation rarely
occurs in nature (particularly in transition
zones), we need to “smooth” this data from
black or white (i.e. on or off) to various
shades of gray (probabilities of occurrence).
 We create a smoothed image for each
LCC type using a “third nearest neighbor”
weighting scheme. If our current pixel is a
“picked point” (i.e. a “hit”) for that LCC type
it earns a score of 50. A “miss” earns no
score. We then look to the north, south,
east, and west of our current pixel. A hit
from any of these four pixels earns our
current pixel another 6.82 points each.
From our next nearest neighbor, the four
diagonals (i.e. northeast, southeast,
southwest, and northwest of our current
pixel), a hit earns our current pixel another
3.41 points each. Finally, for our third
nearest neighbor, the pixel beyond each of
our nearest neighbors in the four cardinal
directions, we earn a 2.27 for each hit.
With this smoothing function, a “hit” pixel
located in a dense patch of other “hit” pixels
will trend towards a score of 100 while an
isolated “hit” pixel will trend towards 50.
Likewise, a “miss” pixel that is completely
surrounded by “hit” pixels will trend
towards 50 while a “miss” pixel far removed
from any “hit” pixels will trend towards 0.
Using such a filtering scheme, we have
created an initial probability map for each
LCC type by relating a pixel’s composite

score to the blackness or whiteness of each
pixel. However, we need to manipulate this
map further to account for topological
influences that we derived previously.
 The idea of using elevation, slope, aspect
angle, and relative elevation to affect
vegetation placement was inspired by
Johan Hammes' paper, “Modeling of
ecosystems as a data source for real-time
terrain rendering” (Hammes, 2001). The
value of each pixel (i.e. the probability of
vegetation placement) from our “smoothed”
image is increased or decreased based upon
the preferred regimes of that particular LCC
type. For example, an evergreen may have
an elevation regime of 0 to 3000 meters,
which means that the closer one gets to
either of those extremes, the more unlikely
an evergreen object is likely to be placed
there. This allows us to create (or enforce)
timberlines and prevent trees from growing
in the ocean. Similarly, evergreens are
unlikely to grow on a very steep slope. Our
LCC configuration file should reflect a
maximum slope angle and probabilities
adjusted negatively as we approach that
angle. A slope’s aspect angle will affect the
density and growth of some LCC objects.
For example, in the North Hemisphere,
trees typically grow better on slopes that
face south or west (Hilts, 1999), resulting in
denser, older growth. Relative elevation (i.e.
comparing the difference between a
particular point’s elevation and the average
elevation of its surrounding neighbors) is
an effort to recognize that dips and valleys
in the terrain will likely receive more water
and be more sheltered from the weather
than rises and ridgelines. Thus, we may
wish to bias our probability to promote
placement in valleys (i.e. negative relative
elevation) and reduce the probability of
placement along ridgelines (positive relative
elevation).
 Each of the above factors contributes to
the final score of each pixel for each LCC
type. Collectively, these pixels form a
probability map reflecting the likelihood
that a particular LCC type exists within the
pixel's corresponding area on the terrain
surface (see Fig. 4). Random draws against
these probability maps determine the type,
location, density, and appearance of the
vegetation objects found within the
synthetic natural environment. Randomized
orientation and scaling of the objects give
the appearance of a greater variety of
models.

Fig. 4 Evergreen probability map

 The resulting procedurally created
geotypical distribution looks plausible (see
Figs. 5-A and B) with overlapping vegetation
types occurring naturally within transition
zones. This simple algorithm can also be
extended to incorporate soil moisture or
other factors (e.g. prevailing winds,
proximity to water) or to generate geotypical
distributions of man-made landscape
features (as seen in Figs. 6 and 7).

Fig. 5-A Geotypical vegetation distribution

Fig. 5-B Geotypical vegetation distribution

Fig. 6 Rural distribution

Fig. 7 Urban distribution

 A masking image adds the capability to
prevent a specific LCC type or multiple
types from occurring in a particular region.
This allows for easy removal of vegetation
objects from lakes or recent alterations to
the terrain (e.g. defoliation, clear-cutting,
wildfires), but can also be used to designate
an area on the map where a geospecific
urban environment needs to be placed.
 Once the location, orientation, and scale
of a particular object model has been
established, it must be added to the scene
using an efficient spatial data structure
such as a quadtree. As the bounding
volume of a branch of the quadtree
intersects or falls within the view frustum,
that branch is considered active and
potentially viewable. Non-active branches
are culled away from the rendering of the
current frame. Small pixel culling prevents
rendering objects that do not meet a
minimum screen size threshold. Finally,
the object model itself can make use of
switch nodes within its geometry to

determine the appropriate LOD required by
the scene (typically as a function of
distance from the view). Thus, distant
objects can be drawn as billboards, medium
range objects can be represented as
intersecting planes, and close objects can
be depicted as complex geometric objects.
Some commercial packages will create LOD
object models automatically, and we have
chosen such a package for our own work.
Our assumption is that most simulation
centers are likely to have a custom-built
library of such objects at their disposal or
have the means to quickly generate such
objects as needed. We believe the creation
of such objects is not the problem, but that
the realistic placement of millions of them
within a scene is the larger challenge.

Automatic Generation of LCC Data

 A logical alternative to creating terrain
probability distributions by hand is to use
machine learning technologies to construct
them automatically. We are investigating
the use of machine learning techniques for
automatically estimating the LCC
distribution in such forms as k-nearest
neighbor estimators, simple Bayesian belief
networks, and neural networks. The
attraction of these techniques is twofold.
Firstly, they typically result in a formally-
specified probability distribution whose
assumptions and biases may be rigorously
characterized. Secondly, these techniques
can be partially or fully automated,
reducing the workload on a human
modeler. A liability of these techniques is
that they require "training data" in order to
function, e.g. a region in which the LCC
values are known and provided to the
system. The tacit assumption here is that
the provided training data is correct and
has a similar distribution to the target
locale to which the technique is being
applied.
 The basis for all machine learning
approaches to constructing a probability
density is a set of training data. The
training data consists of a set of exemplars
each of which corresponds to a single pixel
for which the correct LCC type is known.
Each exemplar is an ordered pair consisting
of domain and range values. The range
value is the LCC type. The domain values
can be any available quantities relevant to
predicting the LCC type. At a minimum, we

include the elevation, slope, aspect angle,
and relative elevation for the pixel in
question. Each of these values is
represented as in integer between 0 and
255 inclusive.

Fig. 8 The rectangle in the upper left is the
training region (i.e. known LCC data). The
rest are false color elevation data.

 The simplest and most successful
approach we have tried so far is to estimate
the LCC type using a k-nearest neighbors
density estimator (Duda, Hart, and Stork
2000). At each pixel where the LCC type is
unknown (the query point), the domain
values described above are gathered. Let
us take xi to be the vector of domain values
for the i’th member of the training set and
yi to be the corresponding (known) value of
the LCC type. Let x to be the corresponding
vector of values at the query point. For each
query point we find the k exemplars with
range values (xi’s) closest (in terms of
ordinary Euclidean distance) to the query
point. The search for the nearest exemplars
can be performed in log time by using data
structures and search algorithms designed
to make spatial range queries efficient,
such as the k-d tree (Preparata and
Shamos 1985). The probability of each LCC
type at the query point is then taken to be
the fraction of the k exemplars having that
LCC type. Figs. 8 and 9 display the region
with known LCC values and the maximally-
likely value of the LCC type over the entire
region, including on the training set. Note
that the predictions for the training region
would not be used and are presented only

for purposes of comparison to the ground
truth. While highly imperfect (some features
such as urban regions are not predicted at
all), it may be usable for some purposes.

Fig. 9 The maximum likelihood estimate of
the LCC type with the k-nearest neighbors
estimator.

 One weakness of this model as
compared to the by-hand approach outlined
above is that it does not take into account
the LCC type assigned to nearby pixels.
There is a chicken-and-egg problem implicit
here, as if the LCC type of a given pixel is
unknown, the types of neighboring pixels
may be unknown as well. This difficulty
may be overcome by constructing the LCC
type estimates iteratively. That is, given an
initial, possibly random, guess of all
unknown LCC types, the LCC type at each
pixel is estimated to be consistent with the
guess. This estimation process is then
repeated until convergence. This is a fairly
established idea that began with (Geman
and Geman 1984) and has spawned a
whole field of research (Winkler 2003). We
have used both simple (also called “naïve”)
Bayesian networks and single artificial
neurons (equivalent to logistic regression)
as the model in applying this approach
(Russell and Norvig 2002), but a
satisfactory result has yet to be achieved. A
more sophisticated coding of the inputs to
the artificial neuron (i.e. “coarse coding”
versus direct input of the rescaled
elevation, etc.) may yield better
performance.

Implementation Details and Performance

 GENETICS resides in the SOARXTerrain
component of the military’s open source
game/simulation engine, Delta3D. Delta3D
is a high-level API that sits on top of
numerous other open source libraries such
as Open Scene Graph (Burns, 2003), Open
Dynamics Engine, OpenAL, Character
Animation Library, and others. Within
GENETICS, extensive use is made of the
Geospatial Data Abstraction Layer (GDAL).
GDAL is an open source translator library
for raster geospatial data formats. GDAL
allows GENETICS integrate diverse datasets
(NGA DTED®, USGS NLCD, NASA
LandSat7, and US Census Bureau TIGER)
without the need for expensive proprietary
tools.
 As noted earlier, GENETICS works in
tandem with our CLOD implementation
SOARXTerrain, but SOARXTerrain is not
dependent on GENETICS. Thus, we can
run a Delta3D application that uses only
SOARXTerrain, but not GENETICS. We
could also replace the terrain surface CLOD
algorithm (e.g. with another CLOD
implementation or a static mesh) without
impacting GENETICS.

Fig. 10 GENETICS “black box” diagram

 In Fig. 10, we show the flow of data
through the system. Raw source data is
input from the left. User-manipulated XML
configuration files and visual models are
input from the top. SOARXTerrain
generates a terrain mesh, base texture, and

detail textures that are cached for
subsequent runs as desired. The elevation
data is also used by GENETICS to create its
topographic textures. The LCC image is
used to generate the picked points and
smoothed points textures. Finally, a
probability map is created for each LCC
type. All of these images are cached for
subsequent runs of the same terrain.
 Our GENETICS test system (Athlon XP
3000, 1Gb RAM, NVIDIA 6800GT 256Mb)
currently runs at 15 frames per second
(1600x1200) with 1.6 million objects from
five LCC types represented in the scene.
From the start of execution with an empty
cache to the first rendered frame takes
approximately two minutes. Using cached
data cuts this time in half.
 Geometric object instancing (Carucci,
2005), still a graphics card driver
dependent feature, holds the promise of
dramatically increasing this frame rate by
storing an object’s vertex and texture
information on the card, thus requiring
only the passing of position attitude
transform information to the shader
program. Additionally, great pain has been
taken to maximize the use of textures as a
storage medium to facilitate the expanded
use of shader programming to improve the
performance of GENETICS.

Conclusions

 We have seen that separate efforts in
improving one particular aspect of terrain
fidelity are not enough to give players the
realism that tactical military training
requires. Thus, we have taken an integrated
approach to incorporate "best of breed"
techniques within a single architecture.
While previously it has taken teams of
artists to create static, small scale, custom-
tailored landscapes, our approach
automatically generates vast realistic
terrains at runtime for any place on Earth.
With a minimum amount of shared source
data and parameters, terrains can be
synchronized easily between clients;
guaranteeing the same terrain environment
is created by all hosts within a
heterogeneous networked simulation
system. Our terrains can be reused or
regenerated afresh with new parameters in
response to the needs of the training
audience. With the simple change of a
random number seed, a new terrain

 SOARXTerrain

detail textures

SOARXTerrain texture

SOARXTerrain mesh

vegetation placement

height map
slope map & aspect angles
relative elevation map
picked points (per LCC type)
smoothed points (per LCC type)
final probability map (per LCC type)

cached files

ve
ge

ta
ti

on
 m

od
el

s

lc
cd

at
a.

xm
l

so
ar

xt
er

ra
in

.x
m

l

LCC image

elevation data

satellite image

GENETICS

database can be generated without the
need to manipulate a database. This feature
allows trainers the flexibility to use the
same terrain repeatedly or create a new one
each time; forcing trainees to not depend
upon the static nature of most simulation
databases.
 The immediate and practical benefit of
this work is that tactical training improves
by giving players a more realistic
environment in which to operate. It is
possible to have simulators and simulated
forces engage in a multi-spectrum tactical
conflict where the natural environment
takes on an active role in the experience
and is no longer simply a backdrop. It is
only at this point, when the ground cover
looks real and foliage hides your view of the
enemy that terrain can truly work towards
becoming a full-fledged entity within the
distributed virtual environment.

References

Balogh, A. (2003). Real-Time Visualization

of Detailed Terrain. Computer Science
Masters thesis. Budapest, Hungary:
Budapest University of Technology
and Economics.

Bitters, B. (2004). Real-Time Simulation

Database Generation: A Conceptual
Model for the Future. Proceedings of
the 2004 IMAGE Conference (pp. 50-
60). Scottsdale, Arizona: The IMAGE
Society.

Burns, D. and Osfield, R. (2003). Open

Scene Graph. Proceedings of the 2003
IMAGE Conference (pp. 76-82).
Scottsdale, Arizona: The IMAGE
Society.

Carucci, F., (2005). Inside Geometry

Instancing, GPU Gems 2:
Programming Techniques for High-
Performance Graphics and General-
Purpose Computation. New York:
Addison-Wesley Professional.

Darken, R., Sullivan, J., and Lennerton, M.

(2003). Practical Issues in Measuring
and Assessing Training Effectivess of
Virtual Environments for Military
Applications. Proceedings of the 2003
IMAGE Conference (pp. 126-136).

Scottsdale, Arizona: The IMAGE
Society.

Davis, M. ed. (2003). America’s Army PC

Game: Vision and Realization, U.S.
Army and MOVES Institute: Monterey,
California: Naval Postgraduate School.

Duda, R., Hart, P. and Stork, D. (2000)

Pattern Classification, 2nd Edition,
Wiley-Interscience.

Geman, S. and Geman, D. (1984)

Stochastic relaxation, Gibbs
distributions, and the Bayesian
restoration of images. IEEE Trans.
PAMI, 6:721—741.

Hammes, J. (2001). Modeling of Ecosystems

as a Data Source for Real-Time
Terrain Rendering. Proceedings of the
First International Symposium on
Digital Earth Moving (pp. 98-111).
London, U.K.: Springer-Verlag.

Hilts, S., and Mitchell, P. (1999). The

Woodlot Management Handbook,
Buffalo, New York: Firefly Books Inc.

Mantler, S., Tobler, R. F., and Fuhrmann,

A. L. (2003). The State of the Art in
Realtime Rendering of Vegetation,
VRVis Tech Report 2003-027, VRVis
Research Center for Virtual Reality
and Visualization, Vienna, Austria.

Peitso, L. E. (2002). Visual Field

Requirements for Precision Nap-of-
the-Earth Helicopter Flight, MOVES
Masters thesis. Monterey, California:
Naval Postgraduate School.

Perlin, K. (1985). An image synthesizer,

ACM SIGGRAPH Computer Graphics,
v.19 n.3, (pp.287-296). New York:
ACM Press.

Preparata, M. and Shamos, I. (1985)

Computational Geometry, an
Introduction, Springer-Verlag.

Russell, S. and Norvig, P. (2002) Artificial

Intelligence: A Modern Approach, 2nd
Edition, Prentice Hall.

Winkler, G. (2003) Image Analysis, Random
Fields, and Markov Chain Monte
Carlo Methods, Springer.

Wright, G. T. (2000). Helicopter Urban

Navigation Training Using Virtual
Environments, Computer Science
Masters thesis. Monterey, California:
Naval Postgraduate School.

Zyda, M., Mayberry, A., Wardynski, C.,

Shilling, R., and Davis, M. (2003). The
MOVES Institute's America's Army
Operations Game. Proceedings of the
2003 Symposium on Interactive 3D
Graphics (pp. 219-220). Monterey,
California: ACM Press.

Authors’ Biographies

Major William David “Fuzzy” Wells is the
first Air Force officer to seek a Ph.D. at the
Modeling, Virtual Environments, and
Simulation (MOVES) Institute, Naval
Postgraduate School located in Monterey,
California. He is a 1991 graduate from
Georgia Tech with a Bachelors of Aerospace
Engineering and a 1996 graduate from the
AF Institute of Technology where he earned
an MS in Computer Systems specializing in
Modeling and Simulation (M&S). Maj Wells
was an Air University “Prime Warrior”

instructor, teaching AF officers the basics of
M&S, wargaming, and the application of
aerospace doctrine. Maj Wells has also
served as exercise designer and senior
controller for numerous battlestaff training
exercises worldwide. In 2000, he was
assigned to the AF Agency for M&S where
he directed AF M&S participation in the
Congressionally mandated Millennium
Challenge 02 experiment. In 2002, Maj
Wells was designated a Certified Modeling
and Simulation Professional Charter
Member.
 Christian J. Darken, Ph.D., is an
Associate Professor of Computer Science at
the Naval Postgraduate School, where he
also collaborates intensively with the
MOVES Institute. Previously he was Project
Manager of the Decision Support Systems
project and Senior Member of Technical
Staff at Siemens Corporate Research in
Princeton, NJ, where he was variously
associated with the Learning Systems,
Adaptive Information and Signal
Processing, and Software Engineering
Departments. He was also a programmer of
one of the first commercial first-person
perspective massively-multiplayer games.
He received his Ph.D. in Electrical
Engineering from Yale University in 1993,
and previously received the M.S. and M.
Phil. in Physics from the same institution.

